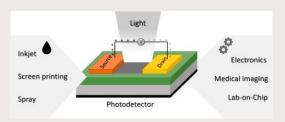
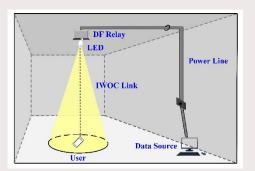


Area of the detector A_D to bandwidth f_{PD} trade-off

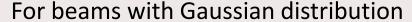

If the **detector size** A_D is bigger \rightarrow better **signal-to-noise ratio**

but Large $A_D o$ Large capacitance $\mathcal{C}_S o$ Small f_{PD}

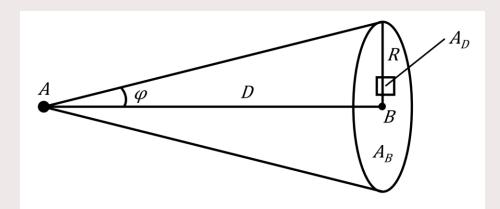


If the **detector size** is *smaller* \rightarrow *larger* **bandwidth**

but Small $A_D o$ Small signal-to-noise ratio

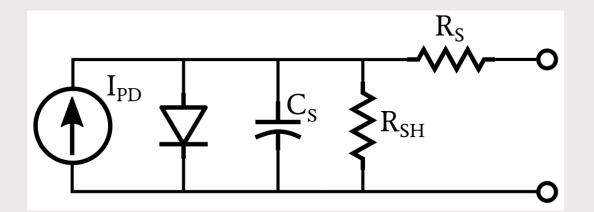


Transmitter side


For beams with uniform distribution

$$P_{R,opt} = \frac{A_D}{A_B} P_{T,opt} = \frac{A_D}{\pi D^2 \tan^2 \varphi} P_{T,opt}$$
 (1)

$$P_{R,opt} = P_{T,opt} \left(1 - exp \left(-\frac{A_D}{A_B} \right) \right)$$
 (2)


For small
$$A_D$$
: $P_{R,opt} \approx \frac{A_D}{A_B} P_{T,opt}$ (3)

- $P_{R.opt}$ is received power,
- $P_{T.ont}$ is optical transmitted power,
- A_B is size of the beam (for Gaussian beam it is an area with radius r_0 where intensity falls down to $1/e^2$ of the peak irradiance)
- A_D is the size of the detector
- **D** is distance between transmitter and detector
- ϕ is beam divergence

Receiver side

Bandwidth of the photodiode depends on two elements, source resistance R_S and its capacitance C_S

$$f_{PD} = \frac{1}{2\pi R_S C_S} = \frac{w}{2\pi R_S A_D \varepsilon \varepsilon_0}$$
 (5)

Bandlimited effect due to size of the detector is in its capacitance

$$C_S = \frac{\varepsilon \varepsilon_0 A_D}{w} \qquad (4)$$

- ε is dielectric constant
- ε_0 is dielectric constant of vacuum
- A_D is detector size
- w is depletion width

Different strategies

Using bandwidth of PD

- Noise is flat below 3dB limit
- No filtering needed, so no noise enhancement occurs by it

Using transimpedance amplifier

- Improves bandwidth and noise performance

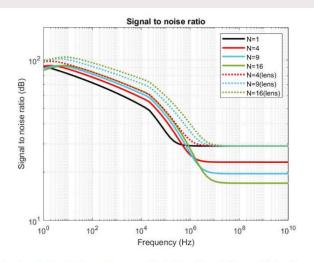


Fig. 7. Output Noise power spectral density from Different Noise Sources

Using different modulation strategies

- OFDM with waterfilling
- Allows to use more effectively available bandwidth through power allocation

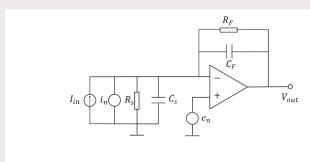


Fig. 11. Noise Model of Optical Receiver Front End

Throughput for *M*-PAM system

Throughput of *M*-PAM system can be expressed as

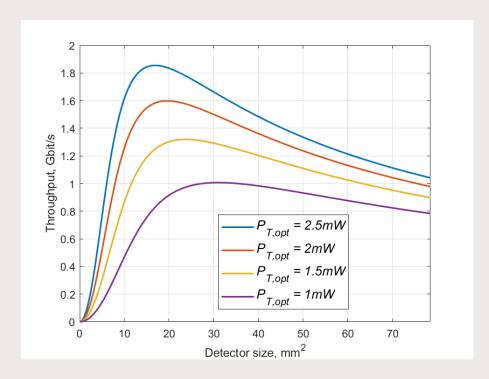
$$R_b = 2mf_{PD} = f_{PD} \left[\log_2 \left(1 + \frac{h^2 \sigma^2}{N_0 \Gamma f_{PD}} \right) \right]$$
 (6)

where Γ is the modulation gap can be derived through BER.

which effectively can be seen as (the impact of the detector):

$$R_b \approx \frac{1}{A_D} \left[\log_2 \left(1 + \frac{A_D^2 \sigma^2}{N_0 \Gamma_{A_D}^{\frac{1}{2}}} \right) \right] \tag{7}$$

Parameter	Value
Transmitted power $P_{T,opt}$	2.5 mW
Beam size	78.5 mm ²
Modulation gap Γ	4 (6dB)
Noise spectral density N_0	10 ⁻¹⁷ W/Hz


- $m = \log_2 M$ is amount of bits
- f_{PD} is bandwidth of the photodiode
- *h* is the pathloss
- N_0 is noise spectral density
- ϵ_N is energy per dimension
- BER is bit error rate
- A_D is the size of the detector

Optimal detector size for $f = f_{PD}$

$$R_b \approx \frac{1}{A_D} \left[\log_2 \left(1 + \frac{A_D^2 \sigma^2}{N_0 \Gamma \frac{1}{A_D}} \right) \right]$$

- Results are limited by $P_{T,opt} = 2.5mW$ as it is absolute limit for eye-safety
- For infrared, power limits are higher
- There is no noticeable difference in behavior for Gaussian beams and for beam with uniform distribution
- For lower transmit powers or for higher attenuation, the optimal size is larger than for strong signals

Conclusions

There is an optimal detector size for non-imaging OWC systems. But system only uses bandwidth strictly below 3dB limit.

- Noise is flat below 3dB bandwidth
- Optimal detector size depends on the parameters of the system
- For weak signals, optimum is less clear as negative effects of capacity on the throughput are less

Next steps to optimize and improve the model will be:

- Receiver design that includes transimpedance amplifier (TIA)
- Include imaging systems
- Improvement of bandwidth and noise performance
- Different modulation strategies

Thank you for your attention

10/11/2022

Lev Azarkh, Doctoral Candidate

