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free-space beam-steered optical communication
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BROWSE’s system concept:
 narrow pencil beams ( ‘virtual fibres’ )

→ no sharing, high capacity, 
long reach, high level of privacy

 IR λ>1400nm 
→ eye safe, Pbeam up to 10mW

 use of 1.5μm fibre-optic components
→ mature components available

 passive diffractive beam steerer 
→ no local powering needed, easily scalable 
to many beams (just add λ-s)

 λ-controlled 2D steering 
→ embedded control channel

[Koonen et al, MWP2014]
[Koonen et al., JLT Oct. 2016, JLT May 2018, JLT Oct. 2018, RSTA Mar. 2020]



4USP-s of Indoor beam-steered OWC vs. WiFi, LiFi

WiFi, LiFi
Shared capacity 
 bitrate × no. devices restricted 
 privacy issues
 EMI sensitive (WiFi)
Beam-steered OWC
No capacity sharing 
 much higher user density
 much higher bitrate/device
 personalized, 

enhanced privacy
 no EMI disturbances
 high energy efficiency, signal 

only where and when needed 1
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WiFi-6 (IEEE 802.11ax, Feb. 2021) OFDMA+1024QAM, PHY max. 1201Mbit/s
WiFi-5 (IEEE 802.11ac-2013) MIMO-8, 256QAM, PHY 867Mbit/s
WiFi-4 (IEEE 802.11n-2009) MIMO-4, 64QAM, PHY 150Mbit/s
IR-BS OWC: 128 beams × 112Gbit/s = 14.3Tbit/s [ECOC2017]

* a.k.a. ‘LiFi 2.0’
4

→ a beam acts as a ‘virtual fibre’
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Requirements:
 Large bandwidth
 Large aperture
 Wide Field-of-View
 Simple
 Compact
 Low power consumption

Solutions reported:
 Non-imaging optics, such as compound parabolic concentrator
 Angular diversity receiver (multiple PD-s and TIA-s)
 PIC with  large/multiple surface grating couplers + waveguide-fed UTC-PD
 Wavelength conversion in phosphorent slab waveguide or fibre
 2D photodiode matrix + single TIA (first reported at ECOC2020* ; with 4 quad PD-s, not scalable)

* Koonen et al, “Novel broadband OWC receiver with large aperture and wide Field-of-View”, 
ECOC2020, paper Tu2G.4

OWC receiver design
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OWC receiver with 2D matrix of photodiodes

 2D matrix of photodiodes (i.s.o. single large-area PD)
 Single pre-amplifier 

𝑍் 𝜔 = 0 = 𝑣௢௨௧(𝑡)𝑖௧௢௧(𝑡) ቤఠୀ଴ =  𝐴1 + 𝐴  𝑅௧𝜔ିଷௗ஻ =  ଵା஺஼೏·ோ೟ if  𝑍௧௢௧ ≈ ଵ௝ఠ ஼೏
TIA characteristics:

→ BW limit due to PD capacitance
Pat. PCT/EP2020/080594 (filed 30 Oct. 2020)



7OWC TIA receiver - frequency characteristics

𝑍்,௥௘௙ 𝜔 = 0 = 𝑣௢(𝑡)𝑎ത  · 𝑅 · 𝑃(𝑡) ≈ 𝐾 · 𝐴1 + 𝐴 · 𝑅௧

with a square M×M matrix 
of photodiodes in a TIA the 
same bandwidth is 
achieved as with a single 
photodiode, whereas 
active area is M2 times 
larger, and output signal 
is M times larger.

𝜔ିଷௗ஻ ≈ 𝑀𝐾 · 1 + 𝐴𝐶ௗ · 𝑅௧

M⋅K⋅Rt

K⋅Rt

× M

/ M⋅K

ω

ZT,ref

log-log chart

ω-3dB,par ω-3dB,single PD

× KRt

/ K/M

∼ω-1

1
2

M

1 2 K

1 2
1
2
M

K

M

1 2
1
2

K

2D par./ser. 
M=K

2D par./ser.
M<K

parallel
M×K

2D par./ser.
M>K

1 2
1
2

M

K

single PD 𝑎ത⋅P(t) : average power received per PD



8

1,5

2,0

2,5

3,0

3,5

-100% -50% 0% 50% 100%

V_
n 

(V
)

Rel. dev. x

V1

V2

V3

V4

V1a

V2a

V3a

V4a

Rp = 1MΩ

Rp = 50kΩ

Bias voltage unbalances at uneven illumination (Vbias=10V, M=4, P=10μW)

Uneven illumination of 2D matrix of photodiodes

Vbias

0

I

a1⋅P

a2⋅P

aN⋅P

V1

+

-
I1

Rp

V2

+

-
I2

Rp

VN

+

-
IN

Rp

Rs

Rs

Rs

1
1+x/3

1+2x/3
1+x

Coupled 
powers

PD1 PD4

 reducing  Rp reduces PD bias unbalances at uneven illumination
 as long as Rp >> Rt / (A+1) , BW of OWC receiver is not affected 
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• Gaussian beam
• 4×4 PD array moving diagonally across the beam’s footprint

Photodiode matrix – analysis of bias conditions Vm

Reff=1MΩ

Reff=50kΩ

tan 𝛼 = Δ𝑠𝑓 (1 െ 𝑝)Gaussian_beam_on_PD_matrix_v5.m
𝑅௘௙௙ = 𝑍ௗ ብ 𝐾 · 𝑅௣1 + 𝑅௦ 𝑍ௗ⁄ amjk 221106

bias voltage 
per PDMoving beam across PD matrixReceived power per PDBeam onto PD matrix

(at defocusing p=0.2)
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Capturing the beam by the photodiode matrix

Defocusing factor p=x/f: spot size ∅Dc = p D1 > PD dia. ∅D2

With ideal thin lens ∅D1 and uniform beam ∅D0 :
 Coupling fraction T of beam’s power into all photodiodes (matrix 

fill factor η)𝑇 = cos𝛼 · 𝜂 · ஽మ௣ ஽బ ଶ
for p > D2 / D1 decreases if p increases𝑇 = cos𝛼 · 𝜂 · ஽భ஽బ ଶ
for 0 < p ≤ D2 / D1

 FoV half angle αmax : tan 𝛼௠௔௫ = ௣·஽భି ஽మଶ ௙ ଵି௣ increases if p increases

 ideal case : uniform beam, thin aberration-free lens
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 4×4 matrix ∅1.32mm of ∅150μm PDs; single PD ∅250μm
 curves calculated by varying p
 solid curves: Gaussian beam, Fresnel lens (25117 rays traced; accurate for T> -24 dB)
 dashed curves: uniform beam, ideal thin lens (theoretical)

a) b)

Gaussian beam D0=∅100mm projected onto photodiode 
matrix ∅1.32mm (red) for α=5 deg and defocusing p=10%
(both lenses D1= ∅50mm, f=10mm; 1027 rays traced)

Capturing the beam by the photodiode matrix

 realistic case : Gaussian beam, Fresnel lens with aberrations
Thin lens Fresnel lensFoV αmax vs. beam-to-PD coupling T 

→ FoV with 4×4 PD matrix is substantially 
larger than with single photodiode
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4×4 PD matrix
(made by Albis Optoelectronics)

Pat. PCT/EP2020/080594 (filed 30 Oct. 2020)

OWC receiver with differential 
outputs

OWC receiver with ∅2” Fresnel lens

adapted media converter with 
RJ45 output (→ ‘OWC dongle’)

OWC broadband receiver module
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13OWC broadband receiver performance

BER for both single-ended and 
differential receiver outputs

FoV measurements at 1Gbit/s
→ error-free within FoV=10° from center cell
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Lab demonstrator @ TU/e 

 Transfer of high-def video streams at GbE
speed

 Two PRA-s + MEMS switch enabling path 
diversity for avoiding LoS blocking

 Up to 128 beams, ∅10cm

fibers

PRA

optical
receivers

CCC with 2
tunable 
transmitters

PRA

videos
sent

videos
received

control
laptop

7 cells captured with IR 
camera at 2.5m

localization 
detector

MEMS switch

GbE receiver, streaming video
to a laptop

video
sent

video
received

OWC 
receiver
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 An OWC receiver must have a wide aperture, wide FoV, large bandwidth, low power 
consumption (at user side) without being highly complex.

 A scalable 2D photodiode matrix has been presented, which offers larger aperture, wider 
FoV and same bandwidth as a single PD, without complex power-consuming electronics 
(only single TIA needed).

 GbE live video streaming to laptop with a OWC receiver ‘dongle’ has been demonstrated in 
laboratory setup to multiple users, with FoV≈10 deg.
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Thank you!

Thank you for your attention!  
Any questions?


